Implement regular expression matching with support for '.'
and '*'
.
'.' Matches any single character.'*' Matches zero or more of the preceding element.The matching should cover the entire input string (not partial).The function prototype should be:bool isMatch(const char *s, const char *p)Some examples:isMatch("aa","a") → falseisMatch("aa","aa") → trueisMatch("aaa","aa") → falseisMatch("aa", "a*") → trueisMatch("aa", ".*") → trueisMatch("ab", ".*") → trueisMatch("aab", "c*a*b") → true
注意:这里的a*表示a可以重复0次或者多次,不是a和*分开的。
It seems that some readers are confused about why the regex pattern ".*"
matches the string"ab"
. ".*"
means repeat the preceding element 0 or more times. Here, the "preceding" element is the dot character in the pattern, which can match any characters. Therefore, the regex pattern".*"
allows the dot to be repeated any number of times, which matches any string (even an empty string). Think carefully how you would do matching of '*'
.Please note that '*'
in regular expression is different from wildcard matching, as we match the previous character 0 or more times. But, how many times? If you are stuck,recursion is your friend.
动态规划,无敌存在
class Solution {public: bool isMatch(const char *s, const char *p) { int i, j; int m = strlen(s); int n = strlen(p); /** * b[i + 1][j + 1]: if s[0..i] matches p[0..j] * if p[j] != '*' * b[i + 1][j + 1] = b[i][j] && s[i] == p[j] * if p[j] == '*', denote p[j - 1] with x, * then b[i + 1][j + 1] is true iff any of the following is true * 1) "x*" repeats 0 time and matches empty: b[i + 1][j -1] * 2) "x*" repeats 1 time and matches x: b[i + 1][j] * 3) "x*" repeats >= 2 times and matches "x*x": s[i] == x && b[i][j + 1] * '.' matches any single character */ bool b[m + 1][n + 1]; b[0][0] = true; for (i = 0; i < m; i++) { b[i + 1][0] = false; } // p[0..j - 2, j - 1, j] matches empty iff p[j] is '*' and p[0..j - 2] matches empty for (j = 0; j < n; j++) { b[0][j + 1] = j > 0 && '*' == p[j] && b[0][j - 1]; } for (i = 0; i < m; i++) { for (j = 0; j < n; j++) { if (p[j] != '*') { b[i + 1][j + 1] = b[i][j] && ('.' == p[j] || s[i] == p[j]); } else { b[i + 1][j + 1] = b[i + 1][j - 1] && j > 0 || b[i + 1][j] || b[i][j + 1] && j > 0 && ('.' == p[j - 1] || s[i] == p[j - 1]); } } } return b[m][n]; }};